>

Solenoidal vector field - V represents a solenoidal vector field. The value of the net flux crossing any arbitrary closed surface will be A)

The Solenoidal Vector Field (contd.) 1. Every solenoidal field can be expressed as the c

The field B is conservative but not solenoidal. (c) ∇ · C = ∇ · parenleftbigg ˆ r sin φ r 2 + ˆ φ cos φ r 2 parenrightbigg = 1 r ∂ ∂ r parenleftbigg r parenleftbigg sin φ r 2 parenrightbiggparenrightbigg + 1 r ∂ ∂φ parenleftbigg cos φ r 2 parenrightbigg + ∂ ∂ z 0 = − sin φ r 3 + − sin φ r 3 + 0 = − 2sin φ r 3,we find that the part which is generated by charges (i.e., the first term on the right-hand side) is conservative, and the part induced by magnetic fields (i.e., the second term on the right-hand side) is purely solenoidal.Earlier on, we proved mathematically that a general vector field can be written as the sum of a conservative field and a solenoidal field (see Sect. 3.11).The divergence of this vector field is: The considered vector field has at each location a constant negative divergence. That means, no matter which location is used for , every location has a negative divergence with the value -1. Each location represents a sink of the vector field . If the vector field were an electric field, then this result ...Dear students, based on students request , purpose of the final exams, i did chapter wise videos in PDF format, if u are interested, you can download Unit ...The extra dimension of a three-dimensional field can make vector fields in ℝ 3 ℝ 3 more difficult to visualize, but the idea is the same. To visualize a vector field in ℝ 3, ℝ 3, plot enough vectors to show the overall shape. We can use a similar method to visualizing a vector field in ℝ 2 ℝ 2 by choosing points in each octant.a) Solenoidal field b) Rotational field c) Hemispheroidal field d) Irrotational field View Answer. Answer: a Explanation: By the definition: A vector field whose divergence comes out to be zero or Vanishes is called as a Solenoidal Vector Field. i.e. If (∇. vec{f} = 0 ↔ vec{f} ) is a Solenoidal Vector field. 7.2.7 Visualization of Fields and the Divergence and Curl. A three-dimensional vector field A (r) is specified by three components that are, individually, functions of position. It is difficult enough …An irrotational vector field is a vector field where curl is equal to zero everywhere. If the domain is simply connected (there are no discontinuities), the vector field will be conservative or equal to the gradient of a function (that is, it will have a scalar potential). Similarly, an incompressible vector field (also known as a solenoidal vector field) is …1. Vortex lines are everywhere tangent to the vorticity vector. 2. The vorticity field is solenoidal. That is, the divergence of the curl of a vector is identically zero. Thus, ω r ( ) 0 0 ∇• = ∇• =∇•∇× = ω ω r r r r r r r V Clear analogy with conservation of mass and streamlines −∞ ∞ 3. Continuous loop 2. One end ...Thinking of 1-forms as vector fields, the exact form is the curl-free part, the coexact form is the divergence-free part, and the harmonic form is both divergence- and curl-free. Harmonic forms behave a bunch of rigid conditions, like unique determination by boundary conditions. The only harmonic function which is zero on the boundary is the ...field over the surface of a volume with cross-sectional area A and thickness x. The integral over the left-hand side is AEx(x). If the electric field is visualized in terms of vector field lines, the integral is the flux of lines into the volume through the left-hand face. The electric field line fluxIntegrability conditions. If F is a conservative vector field (also called irrotational, curl-free, or potential), and its components have continuous partial derivatives, the potential of F with respect to a reference point r 0 is defined in terms of the line integral: = = (()) ′ (),where C is a parametrized path from r 0 to r, (),, =, =.The fact that the line integral depends on the path C ...I do not understand well the question. Are we discussing the existence of an electric field which is irrotational and solenoidal in the whole physical three-space or in a region of the physical three-space?. Outside a stationary charge density $\rho=\rho(\vec{x})$ non-vanishing only in a bounded region of the space, the produced static electric field is both irrotational and solenoidal.You can use this online vector field visualiser and plot functions like xi-yj, xj or xi+yj to understand rotational and solenoidal vector fields.a) Solenoidal field b) Rotational field c) Hemispheroidal field d) Irrotational field View Answer. Answer: a Explanation: By the definition: A vector field whose divergence comes out to be zero or Vanishes is called as a Solenoidal Vector Field. i.e. If (∇. vec{f} = 0 ↔ vec{f} ) is a Solenoidal Vector field. 7.I do not understand well the question. Are we discussing the existence of an electric field which is irrotational and solenoidal in the whole physical three-space or in a region of the physical three-space?. Outside a stationary charge density $\rho=\rho(\vec{x})$ non-vanishing only in a bounded region of the space, the produced static electric field is …We have learned that a vector field is a solenoidal field in a region if its divergence vanishes everywhere, i.e., According to the Helmholtz theorem, the scalar potential becomes zero. Therefore, An example of the solenoidal field is the static magnetic field, i.e., a magnetic field that does not change with time. As illustrated in the (figure ...Question: - Let F be a smooth Cº vector field F:U CR3 + R3 Recall that we say that such a P(x, y, z) vector field F Q(x, y, z) is a solenoidal (or "incompressible") vector field if div(F) = 0 R(x, y, z) everywhere in U. Furthermore, recall that a vector field is purely rotational if there exists a vector potential function A:U CR3 R3 such that F = curl(A).Integrability conditions. If F is a conservative vector field (also called irrotational, curl-free, or potential), and its components have continuous partial derivatives, the potential of F with respect to a reference point r 0 is defined in terms of the line integral: = = (()) ′ (),where C is a parametrized path from r 0 to r, (),, =, =.The fact that the line integral depends on the path C ...the velocity field of an incompressible fluid flow is solenoidal; the electric field in regions where ρ e = 0; the current density, J, if əρ e /ət = 0. Category: Fluid dynamics. Solenoidal vector field In vector calculus a solenoidal vector field is a vector field v with divergence zero: Additional recommended knowledge How to ensure.We thus see that the class of irrotational, solenoidal vector fields conicides, locally at least, with the class of gradients of harmonic functions. Such fields are prevalent in electrostatics, in which the Maxwell equation. ∇ ×E = −∂B ∂t (7) (7) ∇ × E → = − ∂ B → ∂ t. becomes. ∇ ×E = 0 (8) (8) ∇ × E → = 0. in the ...The gradient of a vector field corresponds to finding a matrix (or a dyadic product) which controls how the vector field changes as we move from point to another in the input plane. Details: Let $ \vec{F(p)} = F^i e_i = \begin{bmatrix} F^1 \\ F^2 \\ F^3 \end{bmatrix}$ be our vector field dependent on what point of space we take, if step …In physics and mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational vector field and a solenoidal vector field; this is known as the Helmholtz …We know that $$\nabla\times\left(\nabla\times\textbf{F}\right)=\nabla\left(\nabla\cdot\textbf{F}\right)-\nabla^2\textbf{F}$$ and since $\vec F$ is solenoidal, $\nabla\cdot\textbf{F}=0$,there fore we have $$\nabla\times\left(\nabla\times\textbf{F}\right)=-\nabla^2\textbf{F}$$ Now for …Answer: Divergence and curl are the operations used to check the nature of field whether it is solenoidal or irrotational. A vector is said to be solenoidal when divergence of a vector is zero whereas a vector is said to be irrotational when curl of a vector is zero. Q.11. State coulomb's law.Divergence at (1,1,-0.2) will give zero. As the divergence is zero, field is solenoidal. Alternate/Shortcut: Without calculation, we can easily choose option “0, solenoidal”, as by theory when the divergence is zero, the vector is solenoidal. “0, solenoidal” is the only one which is satisfying this condition.If you’re looking to up your vector graphic designing game, look no further than Corel Draw. This beginner-friendly guide will teach you some basics you need to know to get the most out of this popular software.If that irrotational field has a component in the direction of the curl, then the curl of the combined fields is not perpendicular to the combined fields. Illustration. A Vector Field Not Perpendicular to Its Curl. In the interior of the conductor shown in Fig. 2.7.4, the magnetic field intensity and its curl areThe well-known classical Helmholtz result for the decomposition of the vector field using the sum of the solenoidal and potential components is generalized. This generalization is known as the Helmholtz-Weyl decomposition (see, for example, ). A more exact Lebesgue space L 2 (R n) of vector fields u = (u 1, …, u n) is represented by a ...#engineeringmathematics1 #engineeringmathsm2#vectorcalculus UNIT II VECTOR CALCULUSGradient and directional derivative - Divergence and curl - Vector identit...Changjie Chen. In this article we investigate the relations between three kinds of vector fields with close connection to each other. A compact orientable manifold enables us to integrate over it, which is very different from noncompact manifolds, and this gives difference of those relationships between on compact and noncompact manifolds.divergence of a vector fielddivergence of a vectorhow to find divergence of a vectorvector analysisSolenoidal vector in divergence#Divergence#Divergence_of_a...Description. d = divergence (V,X) returns the divergence of symbolic vector field V with respect to vector X in Cartesian coordinates. Vectors V and X must have the same length. d = divergence (V) returns the divergence of the vector field V with respect to a default vector constructed from the symbolic variables in V.For what value of the constant k k is the vectorfield skr s k r solenoidal except at the origin? Find all functions f(s) f ( s), differentiable for s > 0 s > 0, such that f(s)r f ( s) r is solenoidal everywhere except at the origin in 3 3 -space. Attempt at solution: We demand dat ∇ ⋅ (skr) = 0 ∇ ⋅ ( s k r) = 0.A vector or vector field is known as solenoidal if it's divergence is zero.This ... In this video lecture you will understand the concept of solenoidal vectors.Explanation: If a vector field A → is solenoidal, it indicates that the divergence of the vector field is zero, i.e. ∇ ⋅ A → = 0. If a vector field A → is irrotational, it represents that the curl of the vector field is zero, i.e. ∇ × A → = 0. If a field is scalar A then ∇ 2 A → = 0 is a Laplacian function. Important Vector ...But a solenoidal field, besides having a zero divergence, also has the additional connotation of having non-zero curl (i.e., rotational component). Otherwise, if an incompressible flow also has a curl of zero, so that it is also irrotational, then the flow velocity field is actually Laplacian. Difference from material#engineeringmathematics1 #engineeringmathsm2#vectorcalculus UNIT II VECTOR CALCULUSGradient and directional derivative - Divergence and curl - Vector identit...According to test 2, to conclude that F F is conservative, we need ∫CF ⋅ ds ∫ C F ⋅ d s to be zero around every closed curve C C . If the vector field is defined inside every closed curve C C and the “microscopic circulation” is zero everywhere inside each curve, then Green's theorem gives us exactly that condition.ordinary differential equations - Finding a vector potential for a solenoidal vector field - Mathematics Stack Exchange Finding a vector potential for a solenoidal vector field Asked 4 years, 6 months ago Modified 3 years, 8 months ago Viewed 4k times 2 I have to find a vector potential for F = −yi^ + xj^ F = − y i ^ + x j ^Irrotational and Solenoidal vector fields Solenoidal vector A vector F⃗ is said to be solenoidal if 𝑖 F⃗ = 0 (i.e)∇.F⃗ = 0 Irrotational vector A vector is said to be irrotational if Curl F⃗ = 0 (𝑖. ) ∇×F⃗ = 0 Example: Prove that the vector 𝑭⃗ = + + 𝒌⃗ is solenoidal. Solution:The Solenoidal Vector Field.doc. 4/4. Lets summarize what we know about solenoidal vector fields: 1. Every solenoidal field can be expressed as the curl of some other vector field. 2. The curl of any and all vector fields always results in a solenoidal vector field. 3. The surface integral of a solenoidal field across any closed surface is ...In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics.It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector field.It is equivalent to the statement that magnetic monopoles do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole.SOLENOIDAL VECTOR FIELDS. 3 All derivatives are to be taken in a weak sense so Djϕis the weak j-th derivative of a function ϕ. The spaces W1,p(Ω),H1(Ω) are the standard Sobolev spaces.When ϕ∈ W1,1(Ω) then ∇ϕ:= (D 1ϕ,...,Dnϕ) is the gradient of ϕ. For our analysis we only require some mild regularity conditions on Ω and ∂Ω.TIME-DEPENDENT SOLENOIDAL VECTOR FIELDS AND THEIR APPLICATIONS A. FURSIKOV, M. GUNZBURGER, AND L. HOU Abstract. We study trace theorems for three-dimensional, time-dependent solenoidal vector elds. The interior function spaces we consider are natural for solving unsteady boundary value problems for the Navier-Stokes systemExpert Answer. The vector H is b …. Classify the following vector fields H = (y + z)i + (x + z)j + (x + y)k, (a) solenoidal (b) irrotational (c) neither If the field is irrotational, find a function of h (x, y, z), such that h (1,1,1) = 0, whose gradient gives H (if rotational just type 'no'):1. Vortex lines are everywhere tangent to the vorticity vector. 2. The vorticity field is solenoidal. That is, the divergence of the curl of a vector is identically zero. Thus, ω r ( ) 0 0 ∇• = ∇• =∇•∇× = ω ω r r r r r r r V Clear analogy with conservation of mass and streamlines −∞ ∞ 3. Continuous loop 2. One end ...divergence of a vector fielddivergence of a vectorhow to find divergence of a vectorvector analysisSolenoidal vector in divergence#Divergence#Divergence_of_a...Conservative and Solenoidal fields# In vector calculus, a conservative field is a field that is the gradient of some scalar field. Conservative fields have the property that their line integral over any path depends only on the end-points, and is independent of the path travelled. A conservative vector field is also said to be 'irrotational ...The divergence of the vector field \(3xz\hat i + 2xy\hat j - y{z^2}\hat k\) at a point (1,1,1) is equal to. asked Feb 26, 2022 in Calculus by Niralisolanki (55.1k points) engineering-mathematics; calculus; 0 votes. 1 answer. The divergence of the vector field V = x2 i + 2y3 j + z4 k at x = 1, y = 2, z = 3 is _____Adobe Illustrator is a powerful software tool that has become a staple for graphic designers, illustrators, and artists around the world. Whether you are a beginner or an experienced professional, mastering Adobe Illustrator can take your d...Expert Answer. 4. Prove that for an arbitrary vectoru: (X) 0 (In fluid mechanics, where u is the velocity vector, this is equivalent to saying that the vorticity [the curl of the velocity] is a solenoidal vector field [divergence free]. It is very useful in manipulating the equations of motion, particularly at high Reynolds numbers)Apr 18, 2022 · The helmholtz theorem states that any vector field can be decomposed into a purely divergent part, and a purely solenoidal part. What is this decomposition for E E →, in order to find the field produced by its divergence, and the induced E E → field caused by changing magnetic fields. The Potential Formulation: Irrotational and Solenoidal vector fields Solenoidal vector A vector F⃗ is said to be solenoidal if 𝑖 F⃗ = 0 (i.e)∇.F⃗ = 0 Irrotational vector A vector is said to be irrotational if Curl F⃗ = 0 (𝑖. ) ∇×F⃗ = 0 Example: Prove that the vector is solenoidal. Solution: Given 𝐹 = + + ⃗ To prove ∇∙ 𝐹 =0 ( )+ )+ ( ) =0 ...S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows, Algebra i Analiz 5 (1993), no. 4, ... Approximation and extension problems for some classes of vector fields, Algebra i Analiz 10 (1998), no. 3, 133-162 (Russian, with Russian summary); English transl., ...Acceleration field is a two-component vector field, describing in a covariant way the four-acceleration of individual particles and the four-force that occurs in systems with multiple closely interacting particles. The acceleration field is a component of the general field, which is represented in the Lagrangian and Hamiltonian of an arbitrary physical system by the term with the energy of ...irrotational) vector field and a transverse (solenoidal, curling, rotational, non-diverging) vector field. Here, the terms "longitudinal" and "transverse" refer to the nature of the operators and not the vector fields. A purely "transverse" vector field does not necessarily have all of its vectors perpendicular to some reference vector.Examples of irrotational vector fields include gravitational fields and electrostatic fields. On the other hand, a solenoidal vector field is a vector field where the divergence of the field is equal to zero at every point in space. Geometrically, this means that the field lines of a solenoidal vector field are always either closed loops or ...Flow of a Vector Field in 2D Gosia Konwerska; Vector Fields: Streamline through a Point Gosia Konwerska; Phase Portrait and Field Directions of Two-Dimensional Linear Systems of ODEs Santos Bravo Yuste; Vector Fields: Plot Examples Gosia Konwerska; Vector Field Flow through and around a Circle Gosia Konwerska; Vector Field with Sources and SinksSolenoidal rotational or non-conservative vector field Lamellar, irrotational, or conservative vector field The field that is the gradient of some function is called a lamellar, irrotational, or conservative vector field in vector calculus. The line strength is not dependent on the path in these kinds of fields.Examples of irrotational vector fields include gravitational fields and electrostatic fields. On the other hand, a solenoidal vector field is a vector field where the divergence of the field is equal to zero at every point in space. Geometrically, this means that the field lines of a solenoidal vector field are always either closed loops or ...three dimensions, the curl is a vector: The curl of a vector field F~ = hP,Q,Ri is defined as the vector field curl(P,Q,R) = hR y − Q z,P z − R x,Q x − P yi . Invoking nabla calculus, we can write curl(F~) = ∇ × F~. Note that the third component of the curl is for fixed z just the two dimensional vector field F~ = hP,Qi is Q x − ...A vector function a(x) is solenoidal in a region D if j'..,a(x)-n(x)(AS'(x)=0 for every closed surface 5' in D, where n(x) is the normal vector of the surface S. FIG 2 A region E deformable to star-shape external to a sphere POTENTIAL OF A SOLENOIDAL VECTOR FIELD 565 We note that every solenoidal, differential vector function in a region D is ...The gravitational field is not a solenoidal field. See the definition.The difference between the magnetic field and the gravitational field is that the magnetic field is source-free everywhere, while the gravitational field (just like the electric field) ist only source-free almost everywhere.While this might seem a minor difference, it is actually of topological relevance: the magnetic field ...A vector or vector field is known as solenoidal if it's divergence is zero.This ... In this video lecture you will understand the concept of solenoidal vectors.The fundamental theorem of line integrals told us that if we knew a vector field was conservative, and thus able to be written as the gradient of a scalar po...In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: An example of a solenoidal vector field, A common way of expressing this property is to say that the field has no sources ... The divergence and curl of a vector field are two vector operators whose basic properties can be understood geometrically by viewing a vector field as the flow of a fluid or gas. Divergence is discussed on a companion page.Here we give an overview of basic properties of curl than can be intuited from fluid flow. The curl of a vector field captures the idea of how a fluid may rotate.In other words, one splits a general vector field F into the potential and solenoidal parts and and considers transversal and longitudinal Radon transforms of both and . However, even for a finitely supported field F components and are defined in the whole space and they are known to have only a polynomial decay at infinity.For those of us who find the quirks of drawing with vectors frustrating, the Live Paint function is a great option. Live Paint allows you to fill and color things the way you see them on the screen, even if the vector spaces have not been d...Zero divergence does not imply the existence of a vector potential. Take the electric field of a point charge at the origin in 3-space. Its divergence is zero on its domain (3-space minus the origin), but there is no vector potential for this field. If there were, Stokes's theorem would tell us that the flux of the field around the unit ...State whether the field is conservative, solenoidal, both, or neither. A = F5 exp(-3r) /r b) Calculate curl and divergence of the following vector field. State whether the field is conservative, solenoidal, both, or neither. A = x(2x + 3yz) + ŷ(4y − 3xz) + 2(−6z + 3xy) c) Some vector field A is related to a scalar field fas A = Vf.True or False: A changing magnetic field produces an electric field with open loop field lines. Answer true or false: There is an induced current in a closed conducting loop if and only if the magnetic flux through the loop is changing. When a current flows through a wire, a magnetic field is created around the wire. a. True. b. False.Conservative and Solenoidal fields# In vector calculus, a conservative field is a field that is the gradient of some scalar field. Conservative fields have the property that their line integral over any path depends only on the end-points, and is independent of the path between them. A conservative vector field is also said to be ...The function ϕ(x, y, z) = xy + z3 3 ϕ ( x, y, z) = x y + z 3 3 is a potential for F F since. grad ϕ =ϕxi +ϕyj +ϕzk = yi + xj +z2k =F. grad ϕ = ϕ x i + ϕ y j + ϕ z k = y i + x j + z 2 k = F. To actually derive ϕ ϕ, we solve ϕx = F1,ϕy =F2,ϕz =F3 ϕ x = F 1, ϕ y = F 2, ϕ z = F 3. Since ϕx =F1 = y ϕ x = F 1 = y, by integration ...This set of Electromagnetic Theory Multiple Choice Questions & Answers (MCQs) focuses on “Vector Properties”. 1. The del operator is called as. 2. The relation between vector potential and field strength is given by. 3. The Laplacian operator is actually. 4. The divergence of curl of a vector is zero.Download PDF Abstract: This paper studies the problem of finding a three-dimensional solenoidal vector field such that both the vector field and its curl are tangential to a given family of toroidal surfaces. We show that this question can be translated into the problem of determining a periodic solution with periodic derivatives of a two-dimensional linear elliptic second-order partial ...A vector field with zero divergence is said to be solenoidal. A vector field with zero curl is said to be irrotational. A scalar field with zero gradient is said to be, er, well, constant. IDR October 21, 2003. 60 LECTURE5. VECTOROPERATORS:GRAD,DIVANDCURL. Lecture 6 Vector Operator IdentitiesA vector field ⃗is said to be a irrotational vector or a conservative force field or potential field or curl force vector if ∇X⃗= 0 Scalar potential:- a vector field ⃗which can be derived from the scalar field ɸsuch that F= ∇ɸis called conservative force field and ɸis called Scalar potential. 1.Show that ⃗= ̂ ̂is both ...The simplest, most obvious, and oldest example of a non-irrotational field (the technical term for a field with no irrotational component is a solenoidal field) is a magnetic field. A magnetic compass finds geomagnetic north because the Earth's magnetic field causes the metal needle to rotate until it is aligned. Share.A vector field which has a vanishing divergence is called as Solenoidal Vector Field. Explanation: Let the given vector field be ' ', then the divergence of the vector field can be given as : (Where, is delta function given by ) Now, if the divergence of the given vector field is zero. i.e. If . is a Solenoidal Vector field.We consider the problem of finding the restrictions on the domain Ω⊂R n,n=2,3, under which the space of the solenoidal vector fields from coincides with the space , the closure in W 21(Ω) of ...In the remainder of this paper we investigate this conjecture. We begin, in Section 2, by describing our models for our calculations of the magnetic fields for these three coil types, including our methods for the calculation of the off-axis fields for the solenoidal and spherical coils.We then present the numerical results of our calculations in Section 3, where we ultimately compare the ...The relation between vector potential and field strength is given by a) Gradient b) Divergence c) Curl d) Del operator ... Explanation: By Maxwell’s equation, the magnetic field intensity is solenoidal due to the absence of magnetic monopoles. 9. A field has zero divergence and it has curls. The field is said to be a) Divergent, rotationalIrrotational and Solenoidal vector fields Solenoidal vector A vector F⃗ is said to be solenoida, First of all note that a vector field F \mathbf{F} F is said to be solen, A vector field ⇀ F is a unit vector field if the magnitude of each vector in the , $\begingroup$ Oh, I didn't realize you're a , Dear students, based on students request , purpose of the final exams, i did chapter wise videos in PDF format, , However, I don’t think that computing a vector potential is the best way to proceed here. Depending on the, Solenoidal rotational or non-conservative vector field. Lamellar, irrotational, or conservative vector field. , Detailed Solution. Download Solution PDF. CONCEPT: A , Solenoidal Vector Field. In Physics and Mathematics vector calculus at, The curl of the field F → is given by: ∇ × F → = [ i ^ j ^ k ^, Subscribe to his free Masterclasses at Youtube & discussions, Helmholtz's Theorem A vector field can be exp, I do not understand well the question. Are we discussing the e, In vector calculus a solenoidal vector field (also known as an inco, S2E: Solenoidal Focusing The field of an ideal magnetic solenoi, we find that the part which is generated by charges (i.e.,, Determine the divergence of a vector field in cylindrical k1*A®+K2*A (, 11/8/2005 The Magnetic Vector Potential.doc 1/5 Ji.